igorek44 (igorek44) wrote,
igorek44
igorek44

Category:

Квантовая механика (продолжение)

Говоря по-человечески, это аналог того, как если мы запускаем на двух компьютерах в один и тот же момент один и тот же генератор случайных чисел, но результаты последнего умножаем на минус один. Соответственно, куда бы мы не отнесли второй компьютер, по его случайным числам случайные числа первого легко восстановимы. Но, поскольку числа являются случайными, невозможно их осмысленно передавать ни в ту, ни в другую сторону.

В этом месте шаблон разорвался даже у Эйнштейна, и начался небезызвестный в научных кругах холивар.

Решение было найдено в виде теоремы запрета клонирования.

Я, должно быть, похож на страуса, который все время прячет голову в песок относительности, чтобы не смотреть в лицо гадким квантам.
»
— Альберт Эйнштейн

Итак, Эйнштейн недолго гордился тем, что вынес окружающим моск своей теорией относительности. Как известно, в своей мегатеории дедуган выпилил ньютоновскую классическую механику в пределах макромира, заменив её на нечто более точное, и вполне мог бы до пенсии называть всех окружающих пидарасами, но тут внезапно под него начали копать. Другие ботаны с не меньшим рвением приступили к созданию квантовой механики, что в итоге заставило браться за голову и восклицать: «Whatta hell?» уже самого Эйнштейна.

Когда родилась квантовая механика, то даже её создатель Макс Планк так и не принял в глубине души всей причудливости этой науки. Эйнштейн же попросту считал сабж абсурдной теорией, называл его «безумием». Кризис восприятия был так велик, потому что с появлением квантмеха под ногами физиков полностью пропала опора в виде наглядных схем и понятных интерпретаций. Физика чем дальше, тем больше становилась математикой, то есть формульной абстракцией, которую иногда даже невозможно проверить опытным путем, причем формулы порой выдавали попросту абсурдные решения.

Так родился самый настоящий квантосрач, в ходе которого именитые учёные виртуозно троллили друг друга в самых различных диапазонах толщины, а кто ни шиша не понимал в квантовой механике, попросту запасался попкорном.
Заклятые друзья и ковёр.

На стороне Эйнштейна и Правды люто, бешено сражались такие физики, как Планк и Шрёдингер, а Главгадом от аццкого квантмеха со всем его блекджеком и шлюхами выступал Нильс Бор, а также Гейзенберг, Борн, Ландау, Йордан и прочие жители страны эльфов учёные с расширенным сознанием.

Суть квантосрача состояла в ответе на вопрос, действительно ли миром правит принципиальная неопределённость или же мы просто не знаем некоторых свойств микрочастиц, которые (если бы их можно было измерить) позволяли бы стопроцентно предсказать поведение квантов в каждой конкретной ситуации.

Амплитуда бурления говн превышала все виданные доселе в науке пределы, а оппоненты попеременно направляли друг на друга высококогерентные лучи поноса, чем немало доставляли (самим фактом срача для окружающих, и, собственно, тонким троллингом для тех, кто был в теме). Из троллей в то время особо выделялся порождённый антиматерией Дирак, использовавший свой сильно анизотропизированный межушный ганглий для составления бредовых уравнений в квантовых полях негативных релятивистских энергий с целью ввода термина «антиматерия» в бытовую жизнь и без того дружных фшизиков.

Вот, как-то так. Или типа того.

Обнаружив, что его когерентные лучи поноса успешно аннигилируются встречными потоками Бора, Эйнштейн придумал (как ему тогда казалось) окончательное решение квантового вопроса.

В 1935 году Эйнштейн вместе с Борисом Подольским и Натаном Розеном написал статью «Можно ли считать квантово-механическое описание физической реальности полным?», в которой описал мысленный эксперимент, который впоследствии был назван парадоксом Эйнштейна—Подольского—Розена (ЭПР-парадокс).

Согласно соотношению неопределённостей Гейзенберга, нет возможности измерить одновременно координату частицы и её импульс. Предполагая, что причиной неопределённости является то, что производя измерение одной величины, вносится принципиально неустранимые возмущения в её движение и искажение значения другой величины, можно предложить гипотетический способ, которым соотношение неопределённостей можно обойти.

Если взять две одинаковые частицы, образовавшиеся в результате распада третьей частицы, то в этом случае их импульсы должны быть связаны. Это даёт возможность измерить импульс одной частицы и по закону сохранения импульса рассчитать импульс второй, не внося в её движение никаких возмущений. Поэтому, измерив координату второй частицы, можно получить для этой частицы значения двух неизмеримых одновременно величин, что по законам квантовой механики невозможно. Исходя из этого можно заключить, что соотношение неопределённостей не является абсолютным, а законы квантовой механики являются неполными и должны быть в будущем уточнены.

Вброс оказался удачным, Бор завис, но ненадолго. И выдал, в свою очередь, что в данном случае мы обязаны анализировать эти две частицы не как независимые, а как единую квантовую систему. Поэтому, измеряя скорость одной частицы, мы влияем и на другую. И происходит коллапс общей волновой функции. Эйнштейн назвал это кошмарным дальнодействием.

В результате холивар перешел в стадию латентной педерастии, когда все остаются при своем мнении, но не имеют веских аргументов. Над обоими лагерями оппонентов нависла зловещая Жопа, и только экспериментальная проверка могла показать, кто кого (и на чём) будет вертеть. Но, к всеобщему счастью, в то время ещё никто не знал, как провести такой эксперимент. Срыв покровов был отложен на неопределённое время.

В 1951 году физик с клоунским именем Бом придумал хитрый план по постановке эксперимента, который позволил бы учёным таки кончить. В 1964 году другой физик Белл, используя очередной матан, вывел неравенство имени себя, которое позволило формализовать поставленную задачу и наконец решить, кто же из всех д'Артаньян. Как водится в таких случаях, понимали это неравенство немногие, но если и понимали, то объяснить никому не могли. Тем не менее благодаря этой штуке становилось возможным в эксперименте получить определённую величину, описывающую корреляции между удаленными измерениями, и на её основе сказать, имеет ли смысл описывать квантовые явления вероятностно или детерминированно, положив-таки конец квантосрачу.

Основная идея сего эксперимента заключается в следующем: в квантмехе система спутанных частиц описывается так, что, вопреки постулатам теории относительности о предельной скорости света, между ними сохраняется мгновенная взаимосвязь сквозь время и пространство. В неравенстве Белла, хитро покрутив установки, можно было выяснить, действительно такая мгновенная взаимосвязь имеет место или же систему можно описать с позиций только одного лишь близкодействия — то есть в предположении, что частицы после разлёта могут влиять друг на друга исключительно с досветовым запозданием. Красота неравенства Белла в том, что оно строго математически позволяет отсечь любой класс основанных на близкодействии теорий — если опыт покажет те положения, которые предсказываются квантмехом.
Суть неравенства Белла можно объяснить и без всякого матана, тем более что к квантовой механике он имеет лишь опосредованное отношение: [показать]
Допустим, что дано множество некоторых объектов. Например, девиц в Петушках. Как известно, после того как корабли седьмого американского флота покинули станцию Петушки, там образовались три подмножества девиц: блондинки, партийные и изнасилованные. Назовем их A, B и C. В общем случае эти множества могут пересекаться, а могут и не пересекаться. То есть, например, может оказаться так, что среди изнасилованных нет ни одной беспартийной. Чтобы не заморачиваться, будем считать, что все множества пересекаются, но пересечение может оказаться пустым. Также для простоты будем считать, что все, кто не блондинки — брюнетки. Множества брюнеток, беспартийных и нетронутых назовем ~A, ~B и ~C.

Парадокс в том, что, казалось бы, закрепив дальнодействие как факт, Неравенство Белла тем самым казалось бы дискредитировало теорию относительности с её строгим близкодействием. Но ввиду того, что корреляции спутанных частиц носят строго вероятностный характер, становится невозможно передать осмысленное действие куда-либо мгновенно, или (что является прямым выводом ТО) в собственное прошлое, например застрелить собственного дедушку до того как он успешно оплодотворил твою бабушку — создав тем самым причинно-следственный парадокс. Собственно в ТО сверхсветовая передача сигнала и запрещалась прежде всего именно из-за потенциала создать такие парадоксы. Но КМ почти парадоксальным образом, нарушая постулат, тем не менее соблюла основной момент: ненарушение принципа причинности. В итоге и овцы оказались целы, и волки сыты, а квантмех в очередной раз продемонстрировал своё умение сидеть сразу на двух стульях, словно так и надо.
Пруф неравенства Белла

Суть неравенства Белла такова: при любом количестве блондинок и брюнеток, партийных и беспартийных, изнасилованных и нетронутых, соблюдается такое неравенство: N(A,~B) + N(B,~C) >= N(A,~C), что в переводе на русский язык означает, что количество беспартийных блондинок (неважно, изнасилованных или нетронутых), то есть N(A,~B) плюс количество партийных, но нетронутых (неважно, блондинок или брюнеток), то есть N(B,~C) больше либо равно количества нетронутых блондинок, то есть N(A,~C).

Доказательство проще шпареной попы (см. пруфпик). Количество беспартийных блондинок равно количеству нетронутых беспартийных блондинок (N1) плюс количество изнасилованных беспартийных блондинок (N4). Количество партийных, но нетронутых девиц равно количеству нетронутых партийных брюнеток (N3) плюс количество нетронутых партийных блондинок (N2). Количество нетронутых блондинок же равно количеству нетронутых беспартийных блондинок (N1) плюс количество нетронутых партийных блондинок (N2). N1+N4 + N3+N2 очевидно же будет больше, либо равно (в случае, если N3=N4=0) N1+N2. Ясно же, что ни количество нетронутых партийных брюнеток, ни количество изнасилованных беспартийных блондинок не может быть отрицательным! Неравенство Белла доказано.

Теперь представим, что девиц в Петушках не 428, а очень-очень много. Скажем, три миллиарда. И мы их случайным образом поделили на три группы, по миллиарду девиц в каждой, и в каждой группе проводим проверку. Вот только девицы обладают некоторой странностью: из трёх возможных свойств можно проверить только два. Скажем, если содрать с девицы парик, чтобы узнать, блондинка она или нет, а затем проверить наличие партбилета, то уже не остается никакой возможности проверить, изнасилована она или нет. И так далее. Но поскольку группы очень большие и одинаковые, мы можем предположить, что количество блондинок, партийных или изнасилованных во всех группах примерно равно. Тогда в первой группе мы можем посчитать количество беспартийных блондинок, во второй — количество партийных, но нетронутых, а в третьей — количество изнасилованных брюнеток. И с немалой уверенностью можно утверждать, что неравенство Белла для полученных чисел будет соблюдаться.
В квантовой механике же выходит, что количество беспартийных блондинок плюс количество партийных, но нетронутых равно где-то примерно 30% от всех девиц (даже чуть меньше), а количество нетронутых блондинок — где-то 50%. Ну да, 30% конечно же больше либо равно 50%… ЛОЛШТО?! Немая сцена и занавес.

Счастье было так близко, но лишь в 1972 году в Калифорнийском университете наконец были проведены опыты, зафиксировавшие нарушение неравенств Белла и тем самым подтвердившие правоту квантовой механики. Как обычно, все радостно признали результаты эксперимента, но не договорились, что же они значат на самом деле. Квантосрач продолжился.

Итак, неравенства Белла были экспериментально нарушены, ЭПР-парадокс однозначно подтвердил правильность квантовой механики. Принцип неопределённости Гейзенберга нельзя нарушить, эрго в условиях ЭПР-парадокса внесение возмущения в импульс и координату одной частицы непременно влияет на любую другую, как бы далеко ни находилась оная. Это ни много ни мало «кошмарное дальнодействие» (© Эйнштейн), «телепатия», но факт. И тут над постулатами ОТО и всеми классическими представлениями нависла уже нешуточная жопа, которую многие в упор не замечают, а большинство и не догадывается о существовании таковой. Квантовая механика, похоже, окончательно стала нелокальной теорией.

Состояние, при котором изменение одной подсистемы сказывается на другой, называют квантовой сцеплённостью или запутанностью (англ. entanglement).

В состоянии квантовой сцепленности взаимодействие подсистем описывается как единая суперпозиция, которая не локализована в определённой точке пространства (нелокальная). Процесс, когда вследствие взаимодействия с окружением нелокальная суперпозиция переходит в локальное классическое состояние, называется декогеренция, обратный этому процесс рекогеренция. Данное явление лежит в основе квантового компьютера, производительность которого, в отличие от обычного, возрастает экспоненциально.

Суть. Представьте, что Алиса и Боб надыбали пару устройств. На каждом устройстве одна кнопка, один счетчик нажатий и одно табло выдающее значения 0 или 1.

Алиса пять раз нажала кнопку и последовательно получила (счетчик значение):

(1 1) (2 0) (3 0) (4 1) (5 1)

Боб пять раз нажал кнопку на своем устройстве и последовательно получил:

(1 1) (2 0) (3 0) (4 1) (5 1)

То есть значения на устройстве случайные, но второе устройство их точно повторяет. Случайность и корреляция ответов проверяются большой статистикой. Далее, возникает вопрос о том, как оно работает. Возможно, инфа о значениях записана в устройствах. Возможно, первое устройство генерирует случайное значение и сообщает его второму устройству. В случае км сцепленности оба предположения неверны. То что инфа не записана и «скрытых параметров» точно нет проверяется через неравенства Белла. Передача сигнала тоже невозможна, потому что запутанность передается мгновенно (Алиса и Боб могут поехать в разные города, а потом одновременно нажать кнопку на своем устройстве, при этом число совпадет), то есть со сверхсветовой скоростью.

К сожалению, для передачи инфы быстрее скорости света это устройство не годится. Алиса летит на ракете и хочет сообщить Бобу (ровно через сутки после начала полета) все ли нормально в полете («1» — нормально «0» — проблемы). Через сутки Боб нажимает на кнопку и видит (6 1), (7 0), (8 0) и т. д. Как из этих цифр узнать, все ли хорошо у Алисы? Да никак. Цифры-то случайные. И то что у Боба устройство показывает (6 1), (7 0), (8 0) никак не связано с ситуацией у Алисы. Он даже не знает, проводила ли Алиса измерения или нет. Так что сверхсветовая передача инфы невозможна. И это хорошо, так как сверхсветовая передача инфы позволяет послать сигнал в прошлое и нарушить принцип причинности (согласно ОТО, но не КМ!).

Но, это устройство позволяет создать идеальный канал передачи секретной инфы. Алиса говорит Бобу «1» — «нормально», «0» — «проблемы» для кодирования применяй «сообщение» XOR «значение при девятке». Алиса звонит Бобу. Свекровь подслушивает их разговор по параллельному телефону из соседней комнаты. Боб спрашивает «как дела». Алиса нажимает на кнопку и отвечает правду если выпадает(9 0) или ложь, если выпадает(9 1). После этого Боб выполняет обратное преобразование (ведь у него выпало то же значение, что и у Алисы) и узнает правду. Причем Свекровь не сможет узнать правду пока не увидит значения на устройстве. Исследовав это устройство перед разговором Свекровь опять же ничего не узнает, ведь следующее значение случайно. Чем такой способ лучше двустороннего асимметричного шифрования, точно так же допускающего прослушивание линии и известность алгоритмов шифрования? Тем, что по сути этот метод шифрования является шифром Вернама с бесконечным шифроблокнотом. А это единственный метод шифрования, для которого математически доказана абсолютная криптостойкость.

Хохлы знают толк в квантовании поля.

Посмотрев-покурив квантовую механику, теоретики да увидели, что это хорошо. И дабы закрепить вин, решили теоретики создать квантовую теорию поля. Для начала физики воскурили хорошей травы и задались вопросом: а как же, чёрт возьми, проквантовать электромагнитное взаимодействие? Пояснение: «проквантовать» означает описать взаимодействие тел как обмен некоторыми гипотетическими частицами — переносчиками взаимодействия. В квантовой теории поля такие частицы называются «виртуальными», поскольку, согласно теории, они рождаются и умирают так быстро, что их невозможно засечь, хоть они и вполне реальны. Разложение в Ряд Фурье, метод перенормировки и прочий мозголомный матан позволили провести такую операцию с электромагнитным полем практически без скрипа зубами. При дальнейших раскурах травы в лабораториях обнаружилось, что теория вполне удачно описывает как слабое ядерное, так и привычное всем электромагнитное, взаимодействия.

Главным троллем здесь оказался Эйнштейн. Его детище — теория гравитации — ну никак не хотела скрещиваться с квантовой механикой. Весь матан, который укуренные физики придумывали для квантования поля, оказался совершенно бессилен, бесконечности и абсурдные вероятности пёрли отовсюду. Проблема заключается в следующем: в ОТО гравитация описывается как искривление пространства-времени. Таким образом, чтобы «проквантовать» гравитацию, приходится выдвигать гипотезу о дискретности пространства — предположить, что существует минимально возможная длина измеренного отрезка. Собственно, в квантовой механике квантовых теориях гравитации такой предел есть и называется он «Планковский предел расстояния». Но специальная теория относительности утверждает, что по мере приближения скорости наблюдателя к световой длина любого отрезка уменьшается, вплоть до сжатия оного в точку (по достижении скорости света). И такое же колдунство должно происходить и с планковской длиной. Что, естественно, противоречит КМ.

Эти самые бобёр с ослом намертво повесили фундаментальную физику аж до… собственно, до сих пор никто ничего не может понять. Обе теории экспериментально проверены до 100500-го знака после запятой, обе работают как часы, но заставить их работать вместе — это для физиков сейчас нечто вроде святого грааля. Отсюда растут ноги у разных «теорий великого объединения», в частности у теории струн. Физики нервно курят в лабораториях, выбивают у хороших, чётких дядь деньги на уберустановки для экспериментов, но чётких результатов пока нет.

Корреляции обладают физической реальностью, а то, что они коррелируют — нет
»
— Н. Дэвид Мермин на научном языке
«

Истина заключается в том, что никакой ложки нет
»
— Перевод на кухонно-бытовой

Интерпретации квантовой механики — попытка получить ответ на вопрос «о чём, в сущности, говорит квантовая механика?». Квантовая механика считается «наиболее проверенной и наиболее успешной теорией в истории науки», но основной вопрос — каков её глубинный смысл — всё ещё открыт.

В связи с невозможностью договориться, что же всё-таки происходит в этом вашем микромире, британские учёные выдвинули over 9000 версий Глубинного Смысла теории. Иными словами, если свести двух учёных и показать им формулы, то они будут согласно кивать, но если попросить их объяснить ртом, что же это значит, они, скорее всего, набьют друг другу морды.

* Копенгагенская интерпретация — наиболее популярная, порой доставляющая, интерпретация в современном квантмехе. Утверждает, что в квантовой механике результат измерения принципиально недетерминирован, а вероятностный характер предсказаний квантовой механики принципиально неустраним. Копенгагенская интерпретация отбрасывает вопросы типа «где была частица до того, как я зарегистрировал её местоположение» посредством фундаментального огораживания. Последователи интерпретации поголовно состоят из мышей Эйнштейна, поскольку уверены, что именно процесс измерения случайно выбирает в точности одну из возможностей, допустимых волновой функцией данного состояния, а волновая функция мгновенно изменяется, чтобы отразить этот выбор.

Пресловутый немёртвый кот в действии: цветная иллюстрация.

* Многомировая интерпретация — это интерпретация квантовой механики, которая предполагает существование «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. При проведении любого квантового эксперимента вселенная расщепляется на столько вселенных, сколько есть возможных исходов эксперимента и каждый из результатов стопроцентно реализуется в одной из них, а наблюдатель, оказавшись опять же в одной из них, видит свой один конкретный результат. В случае с «двухщелевым опытом» (Опыт Юнга) происходит следующее: при подлете фотона к щели вселенная раздваивается, и фотон вылетит из той щели, во вселенной которой окажется наблюдатель (на самом деле фотон вылетит и из второй щели, но об этом никто не узнает, поскольку наблюдателя там, увы нет). Соответственно наблюдатель констатирует что опыт удался. И наоборот: если наблюдатель окажется в той вселенной, где фотон не вылетит (то есть на самом деле он вылетит, только в той вселенной где наблюдателя нет), то наблюдатель констатирует, что опыт не удался. Согласно мнению противников КФ, данная гипотеза считается самой научно-фантастической (кстати сказать, противники КФ считают её научно-фантастической вообще). Тем не менее, множество авторитетных учёных признают данную гипотезу имеющей право на существование.

* Теория скрытых параметров пытается объяснить результаты квантовых экспериментов неполнотой наших знаний о микромире. Вполне логичные в своей основе эйнштейновские идеи этой теории, тем не менее, не подтверждаются экспериментально, а проведенные проверки неравенства Белла напрямую опровергают существование широкого класса теорий скрытых параметров — то есть, вообще всех теорий со строгой локальностью — чуть менее, чем наглухо. А стало быть таким образом подавляющее большинство ТСП автоматически попали под раздачу сугубо и исключительно за это своё свойство, ибо номенклатура же. Но таки не все поголовно, как это порою модно декларировать среди изысканных жирафов, поскольку теории скрытых параметров без строгой локальности (с кошмарным дальнодействием) экспериментам не противоречат. Но и не подтверждаются.

* Транзактная интерпретация квантов утверждает, что частица посылает запрос в будущее (волна-предложение) и получает ответ из будущего (волна-подтверждение). Степень совпадения фаз определяет амплитуду. Квадрат амплитуды определяет вероятность события. Такой подход решает проблему наблюдателя (парадоксы кота Шрёдингера и мыши Эйнштейна). Свобода воли при этом тоже выпиливается. См. en.w:Transactional interpretation.

* Супердетерминизм пытается объяснить результаты экспериментов полной детерминированностью всего и вся. Как и в транзактной интерпретации, свобода воли выпиливается полностью, но никаких запросов в будущее посылать не надо, потому что и так все события во вселенной предопределены заранее. Поэтому вундервафля, которая плодит пары квантово сцепленных частиц для очередного физика-экспериментатора, заранее знает, каким именно экспериментам тот будет подвергать эти частицы, и подгоняет их свойства таким образом, чтобы результат эксперимента соответствовал квантовой механике. Учёные очень не любят эту интерпретацию: во-первых, получается, что Вселенная их банальным образом троллит, а во-вторых, полная предопределённость ставит крест на всей науке, поскольку от учёных абсолютно ничего не зависит. Да и вообще ни от кого ничего не зависит, даже от неба, даже от Аллаха! Сплошной фатализм и уныние.

* Кроме того, многие физики склоняются к так называемой «никакой» интерпретации квантовой механики, ёмко выраженной в афоризме Дэвида Мермина: «Заткнись и считай!»

Некоторые, впрочем, пошли ещё дальше и заявляют, что окружающего мира вообще не существует, и он является лишь плодом воображения благородного дона. Это элегантное решение как раз и объясняет выводимую при расчётах и наблюдаемую во время экспериментов хуиту.

Алсо, пример копенгагенской интерпретации можно найти в рассказе Зинаиды Гиппиус «Вымысел», а интерпретации Эверетта — в фильме «Осторожно, двери закрываются».

А теперь о грустном. Услышав, что в мире всё-таки есть что-то такое, чего даже ученые не понимают, все астралопитеки стали курить сабж. Однако, выкурили, как водится, в основном конопли, поскольку из науки усвоили только термины, совершенно проигнорировав содержание. В результате:

1. Парадокс наблюдателя, работающий только для электронов, ВНЕЗАПНО стал работать в макромире, и как бы намекает на получение взглядом сотен золота для тех, кто знает Секрет.
2. Вероятностная сущность частиц автоматически стала означать, что возможно что угодно. Многомировая интерпретация уравнения Шрёдингера превратилась в то, что действительно есть параллельные миры, и сейчас из них вылезет Ктулху.
3. Квантовая сцепленность — это, по мнению обитателей нирван, есть реальная возможность телепортации, хотя из физики прямо следует, что это невозможно, хотя на Родине Слонов делают прогнозы.

В итоге каждый уважающий себя Гуру считает нужным сказать, что квантовая механика есть свидетельство, научно доказанное британскими учёными, что всё, чему они обучают своих падаванов — правда. Спасения нет, и даже молитва на учебнике физики за десятый класс здесь не всегда помогает.

А ещё, прошареными атсралопитеками подмечено, что слово «квантовый» влияет на фимоск с той же силой, что и приставка «нано», что позволяет придать научности и значимости каким угодно статьям. А это, в свою очередь, позволяет запудрить последние остатки мозгов у ЦА антинаучной бредятиной, типа «Квантового перехода с обертонами разных порядков в 2012 году».

Знаешь, очень трудно говорить о квантах на языке, изначально предназначенном для того, чтобы одна обезьяна могла сообщить другой, где висит спелый плод.
»
— Лю Цзе, Монах Времени

На данный момент квантовая механика является наиболее проверенной (и в то же время наиболее парадоксальной) теорией в истории науки. Каким же образом она работает, так никто до сих пор и не вкурил, несмотря на многолетний мозговой штурм. В то же время главным доказательством правоты квантовой механики является тот факт, что ты, дорогой Анонимус, сейчас читаешь эту статью. Поскольку именно квантовая механика стала теоретической основой полупроводниковой электроники.

Основной проблемой современной физики является попытка скрестить ужа с ежом вывести Теорию Всего, которая объединила бы квантовую физику с теорией относительности, но на данный момент они совмещаются с такой же радостью, как понимали друг друга Эйнштейн и Бор.

Среди возможных кандидатов на звание Теории Всего сейчас значатся несколько довольно сложных матановых высеров, например Теория петлевой квантовой гравитации и, конечно же, Теория струн (нет, не тех, что в твоей гитаре, дружок). Впрочем, до окончательного решения проблемы еще довольно далеко. В итоге главный вопрос современности остается нерешённым. Отака хуйня, малята.

На сегодня сабж с его парадоксами горячо любим создателями ненаучно-популярных «фильмов, меняющих нашу жизнь».
Subscribe

Recent Posts from This Journal

  • Невероятные приключения барсука в Германии

    Полиция Германии, вызванная на трассу, ведущую в город Гослар на северо-западе Германии, чтобы убрать с дороги дохлого барсука, выяснила, что…

  • однако

    В 1822 году Михаил Сперанский, славно потрудившись на посту генерал-губернатора Сибири, разработал «Устав о ссыльных» и «Устав об этапах в сибирских…

  • золотая осень

Buy for 100 tokens
Buy promo for minimal price.
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 0 comments